If it's not what You are looking for type in the equation solver your own equation and let us solve it.
64w^2-32w+4=0
a = 64; b = -32; c = +4;
Δ = b2-4ac
Δ = -322-4·64·4
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$w=\frac{-b}{2a}=\frac{32}{128}=1/4$
| 2t+4=10t-36 | | 40*0,975^x=20*1,065^x | | 15+6x=80-3x | | 2u+49=19u+15 | | 68=7x/400+40 | | 2t+78=8t+60 | | p+36=18p+19 | | 13c=11c+2 | | 1.895*x^2-x-1=0 | | 18y+65=19y+64 | | (5x-3)(5x+11)=0 | | 1.895x^2-x-1=0 | | 3*x+1=17 | | p+38=5p+22 | | 2x-36=3x-98 | | 7m/5=m-4 | | 5w-40=2w+2 | | 2c=c+41 | | 3u=u+62 | | 5w+6=46 | | 5^2x-8(5^x)+15=0 | | 35-6x=-13-7x | | 5^2x+8(5^x)+15=0 | | 2a=a+38 | | 4^x-(10*2^x)+16=0 | | y2+5y–7=0 | | 3^x+5^x-1=45 | | 5x-64=x | | x*x*x*4-x*x*2-5x-5=0 | | 4(3x+3)=36 | | 2/5+1/2t=5 | | 6x+16=12-24 |